a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
B(a(b(x1))) → A(x1)
A(a(x1)) → A(b(a(x1)))
B(a(b(x1))) → A(c(a(x1)))
A(a(x1)) → B(a(x1))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
B(a(b(x1))) → A(x1)
A(a(x1)) → A(b(a(x1)))
B(a(b(x1))) → A(c(a(x1)))
A(a(x1)) → B(a(x1))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
B(a(b(x1))) → A(x1)
A(a(x1)) → A(b(a(x1)))
A(a(x1)) → B(a(x1))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(a(x1)) → B(a(x1))
Used ordering: Polynomial Order [21,25] with Interpretation:
B(a(b(x1))) → A(x1)
A(a(x1)) → A(b(a(x1)))
POL( A(x1) ) = x1
POL( c(x1) ) = 0
POL( b(x1) ) = x1
POL( B(x1) ) = max{0, x1 - 1}
POL( a(x1) ) = x1 + 1
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
B(a(b(x1))) → A(x1)
A(a(x1)) → A(b(a(x1)))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QTRS Reverse
↳ QTRS Reverse
A(a(x1)) → A(b(a(x1)))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
A(a(b(x0))) → A(a(c(a(x0))))
A(a(a(x0))) → A(b(a(b(a(x0)))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QTRS Reverse
↳ QTRS Reverse
A(a(a(x0))) → A(b(a(b(a(x0)))))
A(a(b(x0))) → A(a(c(a(x0))))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QTRS Reverse
↳ QTRS Reverse
A(a(a(x0))) → A(b(a(b(a(x0)))))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(a(a(x0))) → A(b(a(b(a(x0)))))
POL( A(x1) ) = max{0, x1 - 1}
POL( c(x1) ) = max{0, -1}
POL( b(x1) ) = 1
POL( a(x1) ) = x1 + 1
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QTRS Reverse
↳ QTRS Reverse
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
a(a(x)) → a(b(a(x)))
b(a(b(x))) → a(c(a(x)))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
a(a(x)) → a(b(a(x)))
b(a(b(x))) → a(c(a(x)))
a(a(x1)) → a(b(a(x1)))
b(a(b(x1))) → a(c(a(x1)))
a(a(x)) → a(b(a(x)))
b(a(b(x))) → a(c(a(x)))
↳ QTRS
↳ DependencyPairsProof
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
a(a(x)) → a(b(a(x)))
b(a(b(x))) → a(c(a(x)))